
The 6th International Workshop on System on Chip for Real Time Applications

A generic method for fault injection in circuits

Olivier Fauraxl,3, Laurent Freundl, Assia Tria2, Traian Muntean3, Frederic Bancel4
'Ecole des Mines de St Etienne - Site Georges Charpak, Laboratoire SESAM,

Avenue des Anemones, 13120 GARDANNE, FRANCE, E-mail: faurax@emse.fr
2 CEA-LETI, Laboratoire SESAM, Avenue des Anemones, 13120 GARDANNE, FRANCE

3 Universite de la Mediterranee, "Systemes Informatiques Communicants", 13288 MARSEILLE, FRANCE
4 STMicroelectronics, Division Smartcard, Zone Industrielle de Rousset, 13106 ROUSSET Cedex, FRANCE

Abstract- Microcircuits dedicated to security in smartcards
are targeted by more and more sophisticated attacks like fault
attacks that combine physical disturbance and cryptanalysis. The
use of simulation for circuit validation considering these attacks
is limited by the time needed to compute the result of the chosen
fault injections. Usually, this choice is made by the user according
to his knowledge of the circuit functionnality. The aim of this
paper is to propose a generic and semi-automatic method to
reduce the number of fault injections using types of data stored
in registers (latch by latch).

I. INTRODUCTION

A fault attack on a circuit consists in a physical perturbation
done on one or more parts of it in order to exploit changes
in the result. The main idea is to get results of related
computations that differ only by one fault to be able to
extract critical data by cryptanalysis. The first works about
fault attacks are DFAs (Differential Fault Analysis) leading to
attacks on RSA [I] and on DES [2]. Then, several attacks
were performed on AES [3][4][5].
To design fault tolerant circuits, one musts take in account

its behaviour when faults occur. We suggest simulation-based
fault injection that can be used before silicon IC, that generates
reproductable faults in a less expensive way.
The circuit behaviour is simulated with the chosen fault

model (bit-flip, stuck-at, etc.). In practice, the model is pro-
vided to the simulator. Then, the simulation runs until the
injection moment is reached. The circuit state is modified
and the simulation follows. When simulation stops, circuit
behaviour can be analyzed.

However, current circuit complexity (gates number, metal
levels, etc.) does not permit simulation of all possible faults.
Injection points number can be high, especially if all injection
times are considered. This number increases too with fault
multiplicity. For single faults, simulation time is linear in fault
locations number and in fault times number.

In our work, we investigate the criterions of injection points
choice according to their functionality in the circuit. The target
is to guide, a priori, the injection campaign to the faults
that have a high probability to have an impact on the system
behaviour.

This article is organized as follows : some related works
on fault injection are commented in section 2. We present our
functional weight system of critical latches in section 3. Then,
we discuss the relative importance of faults in the propagation

paths of these critical latches in section 4. In section 5, we
show our generic and semi-automatic method. To conclude,
future works are described in section 6.

II. RELATED WORKS

Fault injection tools and methods exist for about twenty
years. We briefly present a non-exhaustive set of such tools.
MEFISTO [6] is one of the most important contribution as

it was able to simulate multi-level faults on circuits described
in VHDL, using saboteurs and mutants.
VERIFY [71 proposes a new fault injection technique by ex-

tending the VHDL signals syntax. This does not need recom-
pilation as MEFISTO's mutants. Nevertheless, this technique
needs a specific compiler that understands these extensions.
SINJECT [8] is a simulation-based injection tool that uses

MEFISTO's mutants and saboteurs, adding support for non-
synthetizable mixed-mode (VHDlJVerilog) circuit descrip-
tions.
FITSEC [91 divides the circuit to emulate one part on

a FPGA and simulates the remaining part. This technique
drastically decreases the injection time by a factor of 100.

This tools enable one to conduct simulation-based fault
injections without helping him to choose faults to reduce
computation time.

Some other tools guide the user to a subset of possible
injections. Two approaches have been proposed: to select
injections that have a high probability of disturbing the system
(to obtain a lower bound of the coverage rate) or to select
representative injections (to obtain a coverage rate close to
the real one).
DEPEND [10] reduces the number of faults by analysing

the workload.
Guthoff and Sieh [11 analyse the execution of instructions

without fault (golden run) on a processor to simulate faults
only on registers used very often and only when theirs values
make sense.
The technique of fault expansion [121 groups faults to

simulate only one representative of each group. However, this
method is only effective when each fault equivalence class is
a significant portion of the fault population [13].
Our approach advances the art because it is based on types

of data stored in latches to deduce injection points of choice.

1-4244-0898-9/06/$20.00 ©2006 IEEE. 211

The 6th International Workshop on System on Chip for Real Time Applications

III. FUNCTIONAL WEIGHT OF LATCHES

Our model is transient faults that ends in a change of the
systenm's state. The globai state of a circuit is stored in the set
of its latches. So, the faults of our model are the ones that
perturb these memory elements.
To distinguish critical latches, our approach adds a weight

to every latch to represent its impact on the circuit behaviour.
This weight will help the user to choose important latches to
perturbate during the simulation.

The weight takes into account structural and functional
factors of circuits.

Structural factors can be deduced from the circuit netlist
logical cone associated to a latch, type of latch, etc. There are
not treated in this paper.

Functional factors deal with the use of the latch regarding
to the whole circuit: data type, critical value for circuit
behaviour, etc. This informations must be supplied by the
user as they cannot be deduced from the circuit description.
They are needed to compute the functional part of the weight.

We consider three critical data types: secret data, control
data and outputs data.

Secret data has to be isolated from the outside in order to
avoid an information leakage. If there exists observable data
whose value depends on secret data, it has to be protected.
Indeed, a wrong result generated by a perturbation could allow
to deduce the secret data by cryptanalysis.

During the circuit execution, control data is results of tests
and drives the circuit behaviour. A perturbation on correspon-
ding latches impacts security, for example by validating wrong
authentication or by giving access to protected resources.

Outputs data are easily readable. A perturbation that modify
only a part of the result facilitates cryptanalysis. Dusart,
Letourneux and Vivolo [4] show this on AES by modifying
only a quarter of the result (4 bytes out of 16).
The first step of our wheighting method (that is described

in section V) is about adding a weight to latches containing
these three data types.

IV. RELATED PERTURBATIONS

Latches are connected by logical cones. If a perturbation
on a latch B (cf. figure 1) changes the circuit behaviour, it is
likely that perturbations on latches of its propagation path (Ai
and Ci) can induce a modification of the circuit behaviour.

Faults on these latches are called related perturbations
and are divided in two groups: anterior perturbations and
posterior perturbations.

A. Anterior perturbations
A fault injected on the input latches of the logical cone of

B can have a consequence on the value of B. This latches
are written Ai and these perturbations are called anterior
perturbations because B is on the propagation path of the
Ai.

I : latch D logical cone

Fig. 1. Related perturbations (fA: anterior, f2: posterior)

I',

Fig. 2. Example of anterior perturbation

On the case of figure 2. a value change of one of the A
latches is equivalent to a fault on the B latch.

If B contains some secret data, an adressing fault is an
anterior perturbation, as the behaviour is modified even if the
latch containing the secret data was not directly touched by
the fault.

if B contains some control data, an anterior perturbation will
modify the circuit behaviour if the test result is changed. It is
also possible to have a circuit deadlock which is acceptable if
it does not supply a wrong result.
An injected fault near the outputs will provide a partially

wrong result that can lead to a differential analysis. That is why
outputs data are considered as critical: anterior perturbations
can leak informations.

Thus, the weight of a latch B can induce a cascade
phenomenon on the weight of the previous latches on the
propagation path (Ai).
B. Posterior perturbations

In the same way, perturbing output latches of the logical
cones whose B is an input will probably change the behaviour
of a circuit part. These latches are written Ci and these
perturbations are called posterior perturbations because the
Ci are in the propagation path of B.

212

,

I

The 6th Intemational Workshop on System on Chip for Real Time Applications

f2

XI:>

B

02

Fig. 3. Example of posterior perturbation

Figure 3 shows that a value change of one of the C? latches
is equivalent to a fault on the B latch for a part of the circuit
(the one depending on Ci).

For example, perturbing a latch containing a temporary
result depending on secret data can reveal informations. Works
of Yen and Joye [141 show that injection of a safe error (i.e.
error that does not lead to a wrong result) on a temporary

result during exponentiation can provide secret informations.
A posterior perturbation on control data can completely

change the behaviour of a circuit part. This can lead to
an unexpected state and/or an illegal state according to the
security specifications of the system.

With posterior perturbations, a weight on a latch B can

induce a weight on the latches of the logical cones depending
on it (i.e. the CO).

C. Combining weights

Weights will decrease while going up or down the propaga-

tion paths. They will be combined in order to reveal potentially
interesting injection points.

Attacks on AES [3][4][5] are based on some faults that are

near the outputs and the secret round keys: these faults are

anterior perturbations for outputs data and posterior perturba-
tions for secret data.

V. WEIGHT DETERMINATION METHOD

In the first step, the user provides the initial couple list
{latch, weight} for the latches dealing with secret, control
or outputs data. This is the list of all B latches and their
associated wcights, as shown on figure 1,

From these informations and the circuit netlist, the second
step is to compute the weight for related latches (Ai and Ci).
This couples {latch, weight} are then added to the list. This
seconid step is iterated enough to obtain a stable list (i.e. that
is not modified between two iterations).

Finally, it provides as a result a list of couples {latch,
weight} that guides the user's choice of fault injection to

simulate for the circuit validation. The computation is more

formally described on the algorithm 1.
This method is generic as there is no hypothesis on the type

of the considered circuit. Moreover, contrary to the first step
that needs user intervention, the second step can be entirely
automatic.

Algorithm 1 Latch weighting algorithm
Require: circuit +- circuit description
Require: new list +- initial set of couples

(critical-latch, weight)
Require: old list +- {}
Ensure: final list of weights

while new-list #A old-list do
old list +- new list
for all latch in circuit do

tmp.weight +- Compute-weight(latch, circuit, old-list)
if tmp-weight > 0 then
new list - new-list U {(latch, tmp-weight)}

end if
end for

end while
return new-list

VI. CONCLUSION & FUTURE WORKS
In this work, we propose the base of a new method for

circuit validation under fault attacks. This generic and semi-
automatic method targets critical injection points to make the
simulation time acceptable.
We currently work on inital weight valuation of latches

(values of B) regarding to their functionality and on the
influence of B latches weights over the ones of Ai and Ci
in the case of our simplified model described in figure 1. The-
reafter, we will work on a multiple model (interconnections
of several simplified models) whose weights will be deduced
from several weights of the simplified models.
The perspectives of this work will be to make hypothesis on

values and computation formulas, and then to experimentally
test these choices with the tool we develop nowadays. The re-
sults of this study will show the different factors of functional
weight.

Next, we have to combine functional weight and structural
weight that takes in account circuit design near the injection
points considered.

REFERENCES
[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, "On the importance of

checking cryptographic protocols for faults:' Lecture Notes in Computer
Science, vol. 1233, pp. 37-51, 1997.

121 E. Biham and A. Shamir, "Differential fault analysis of secret key
cryptosystems," in Advances in Cryptology - CRYPTO '97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA.
August 17-21, 1997, Proceedings. ser. Lecture Notes in Computer
Science, B. S. K. Jr., Ed., vol. 1294. Springer, 1997, pp. 513-525.

[3] C. Giraud, "Dfa on aes," in Advanced Encryption Standard - AES,
4th International Conference, AES 2004, Bonn, Germany, May 10-
12, 2004. Revised Selected and Invited Papers. ser. Lecture Notes in
Computer Science, H. Dobbertin, V. Rijmen, and A. Sowa, Eds., vol.
3373. Springer, 2004, pp. 27-41.

[41 P. Dusart, G. Letourneux, and 0. Vivolo, "Differential fault ana-
lysis on a.e.s." Cryptology ePrint Archive, Report 2003/010, 2003,
http ://eprint.iacr.org/.

15] G. Piret and J.-J. Quisquater, "A differential fault attack technique
against spn structures, with application to the aes and khazad," in
Cryptographic Hardware and Embedded Systems - CHES 2003, ser.
Lecture Notes in Computer Science, C. D. Walter, 4etin Kaya Koq, and
C. Paar, Eds., vol. 2779. Springer, 2003, pp. 77-88.

213

The 6th International Workshop on System on Chip for Real Time Applications

[61 E. Jenn, J. Arlat, M. Rimen, J. Ohisson, and J. Karlsson, "Fault
injection into VHDL models: The MEFISTO tool," in Proceedings
of the 24th International Symposium on Fault Tolerant Computing,
(FTCS-24), IEEE, Austin, Texas, USA, 1994, pp. 66-75. [Online].
Available: citeseer.ist.psu.edu/jenn94fault.html

[71 V. Sieh, 0. Tschache, and F. Balbach, "Verify: Evaluation of reliability
using vhdl-models with embedded fault descriptions," in FTCS '97:
Proceedings of the 27th International Symposium on Fault-Tolerant
Computing (FTCS '97). Washington, DC, USA: IEEE Computer
Society, 1997, pp. 32-36.

181 H. R. Zarandi, S. G. Miremadi, and A. Ejlali, "Dependability analysis
using a fault injection tool based on synthesizability of hdl models," in
DFT '03: Proceedings of the 18th IEEE International Symposium on
Deject and Fault Tolerance in VLSI Systems. IEEE Computer Society,
2003, pp. 485-492.

191 A. R. Ejlali, G. Miremadi, H. R. Zarandi, G. Asadi, and S. B. Sarmadi,
"A hybrid fault injection approach based on simulation and emulation
co-operation," in DSN-2003 : Proceedings of the 2003 International
Conference on Dependable Systems and Networks. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 479-488.

[101 K. K. Goswami, R. K. lyer, and L. Young, "Depend A simulation-
based environment for system level dependability analysis," IEEE Trans.
Comput., vol. 46, no. 1, pp. 60-74, 1997.

t I I IJ. Giithoff and V. Sieh, "Combining software-implemented and
simulation-based fault injection into a single fault injection method," in
FTCS '95: Proceedings of the Twenty-Fifth International Symposium
on Fault-Tolerant Computing. Washington, DC, USA: IEEE Computer
Society, 1995, pp. 196-206.

[121 D. Smith. B. Johnson, J. 1. Profeta, and D. Bozzolo, "A method to
determine equivalent fault classes for permanent and transient faults."
Washington, DC, USA IEEE Computer Society, 1995, pp. 418-424.

1131 W. Wang, K. S. Trivedi, B. V. Shah, and J. A. P. III, 'The impact of
fault expansion on the interval estimate for fault detection coverage," in
FTCS '94: Proceedings of the 24th International Symposium on Fault-
Tolerant Computing (FTCS '94). Austin, TX, USA: IEEE Computer
Society, 1994, pp. 330-337.

1141 S.-M. Yen and M. Joye, "Checking before output may not be enough
against fault-based cryptanalysis," IEEE Trans. Comput., vol. 49, no. 9,
pp. 967-970, 2000.

214

